
 Handling network traffic control in your
applications

 Target-Audience: C-Developers
 Target-OS: *BSD/Linux/Cygwin
 Time schedule: Tutorial half day

 Location: Eurobsdcon 2008, Friday - October 17th 2008

 Author: Dirk Meyer, FreeBSD user since 2.1.0, ports-committer since 2001
 [dirk.meyer@dinoex.sub.org],[dirk.meyer@guug.de],[dinoex@FreeBSD.org]

 Abstract

 Demonstrate and show network traffic control in an file transfer
application. Using ‘select()’ and buffers to adjust downloads and
upload speed, while maintain incoming and outgoing connections
and shaping traffic per connection and in total.

 Problems of writing portable code, as well as tuning your compiler to
the full potential of warnings. Implementing a small file sever over
TCP from scratch.

 Overview

 1. Design
 2. Implementation
 3. Example Code
 4. References
 5. Questions

 1. Design

 1.1. select() API
 1.2. IPv4 and IPv6
 1.3. How to slow down sending
 1.4. How to slow down receiving
 1.5. Traffic Control Goals

 1.1. select() API

 Use of the classic select() interface.

 Allows the program to do multiple tasks
 No locking needed
 Very portable
 Avoiding racing bugs in the GCC optimizer
 Non blocking IO
 Drawback: only one CPU used

 1.2. IPv4 and IPv6

 Use the new API for IPv4 and IPv6 whenever possible.

 Unions for socket_addr
 getnameinfo()
 inet_pton()
 inet_ntop()

 err.h
 sysexits.h

 1.3. How to slow down sending

 Count the bytes we sent
 Skip sending if we hit a limit

 1.4. How to slow down receiving

 Count the bytes we received
 Skip polling if we hit a limit
 TCP buffers will do the rest

 1.5. Traffic Control Goals

 Maximum speed per transfer

 Overall speed
 for sending

 for receiving

 Not blocking the application

 2. Implementation

 2.1. Maximum speed per transfer
 2.2. Overall speed per send
 2.3. Overall speed per recv

 2.1. Maximum speed per transfer

 Initialize a bucket for each time slots
 Count down bytes till the bucket is empty

 2.2. Overall speed per send

 Ring buffer for smooth bandwidth control
 Initialize a buffer slot each second
 Count the sent bytes for the last 4 seconds
 Stop if we reach the average bandwidth

 2.2. Overall speed per recv

 Ring buffer for smooth bandwidth control
 Initialize a buffer slot each second
 Count the received bytes for the last 4 seconds
 Stop if we reach the average bandwidth

 3. Example Code

 High warning level
 bsd.prog.mk

 4. References

 [1] http://iroffer.org/
 [2] http://iroffer.dinoex.net/

 5. Questions

 Feedback: Dirk Meyer
 [dirk.meyer@dinoex.sub.org],[dirk.meyer@guug.de],[dinoex@FreeBSD.org]

